

Jane: Tools for generating PHP Code

Jane is a set of libraries to generate Models & API Clients based on JsonSchema / OpenAPI specs
by following high quality PHP code guidelines and respecting common & advanced PSR.

	Json Schema

	OpenAPI

	AutoMapper

Backwards compatibility

Backwards compatiblity is an important topic. Those libraries follow Semver, so backwards compatibility will only
break between major versions. This library may use deprecations notices to inform you of the change, but it’s a low
probability, you should always check the CHANGELOG when switching to a new major version.

JsonSchema and OpenAPI

Those libraries generate code and should not be used in runtime. Also, there is no need to extends or use this code in
another libraries. The only thing used, is the command line.

So there is no BC promise on those libraries, you can consider that everything is internal.
The only BC promise is about the command line, and the generated code.

Generated Code

Code generated fall under our BC Promise, but only the public and protected API of the generated code.
When a method of a class is generated, its signature will not change with minor release, but it’s implementation
may change, however a private method can have its signature updated. Behavior of the implementation should not change
between minor releases unless behavior is buggy.

No class will be removed between minor versions, but there can be new classes added.

Runtime Libraries

JsonSchema Runtime and OpenAPI Runtime libraries have a standard BC Promise.

Internal

This documentation describes how JsonSchema & OpenAPI Jane libraries work to generate the code.
It is mainly oriented for people wanting to contribute to theses libraries.

Theses libraries is based on 3 different steps:

Guessing

First step is to guess a set of metadata given a specification (JsonSchema or OpenAPI at the time of writing this).
To do so, it will read the specification, transform it into objects and pass it to guessers implementing one of
the GuesserInterface.

Each guesser tell if it supports the current specification and returns metadata. Occasionally, it will try to guess
sub objects of the specification.

Analyzing

Once all metadata are guessed, they are passed to a set of generators implementing the GeneratorInterface given a
Context.

Then, each generator will analyze the metadata and create PHP code by using the PHP Parser Library [https://github.com/nikic/PHP-Parser]. Using the library
improves the flexibility to create complex code, as using a template generator solution.

Context provides a lots of functions to generate code, like using unique variable name in a scope or adding generated file.

Generation

When the code is ready, the Context is read to generate PHP files and optionally format it with PHP CS Fixer [http://cs.sensiolabs.org/] if available.

Json Schema

Jane JsonSchema is a library to generate models and serializers in PHP from a JSON Schema [http://json-schema.org/] draft v4.

Installation

Add this library with composer as a dev dependency:

composer require --dev jane-php/json-schema "^5.0"

This library contains a lot of dependencies to be able to generate code which are not needed on runtime. However, the generated
code depends on other libraries and a few classes that are available through the runtime package. It is highly recommended
to add the runtime dependency as a requirement through composer:

composer require jane-php/json-schema-runtime "^5.0"

By default, generated code is not formatted, to make it compliant to PSR2 standard and others format norms, you can add the
PHP CS Fixer [http://cs.sensiolabs.org/] library to your dev dependencies (and it makes it easier to debug!):

composer require --dev friendsofphp/php-cs-fixer

Generating a Model

This library provided a PHP console application to generate the Model, you can use it by executing the following command
at the root of your project:

php vendor/bin/jane generate

This command will try to read a config file named .jane located on the current working directory. However, you can name it as you
like and use the --config-file option to specify its location and name:

php vendor/bin/jane generate --config-file=jane-configuration.php

Note

No others options can be passed to this command. Having a config file ensure that a team working on the project always
use the same set of parameters and, when it changes, give vision of the new option used to generate the code.

Configuration file

The configuration file consists of a simple PHP script returning an array:

<?php

return [
 'json-schema-file' => __DIR__ . '/json-schema.json',
 'root-class' => 'MyModel',
 'namespace' => 'Vendor\Library\Generated',
 'directory' => __DIR__ . '/generated',
];

This example shows the minimum configuration required to generate a Model:

	json-schema-file: Specify the location of your json schema file, it can be a local file or a remote one https://my.domain.com/my-schema.json

	root-class: The root class of the root object defined in your json schema, if there is no property on the root object it will not be used

	namespace: Root namespace of all of your generated code

	directory: Directory where the code will be generated at

Given this configuration you will need to add the following configuration to composer, in order to load the generated files:

"autoload": {
 "psr-4": {
 "Vendor\\Library\\Generated\\": "generated/"
 }
}

Options

Other options are available to customize the generated code:

	reference: A boolean which indicate to add the support for JSON Reference [https://tools.ietf.org/id/draft-pbryan-zyp-json-ref-03.html] into the generated code.

	date-format: A date format to specify how the generated code should encode and decode \DateTime object to string

	use-fixer: A boolean which indicate if we make a first cs-fix after code generation, is disabled by default.

	fixer-config-file: A string to specify where to find the custom configuration for the cs-fixer after code generation, will remove all Jane default cs-fixer default configuration.

	clean-generated: A boolean which indicate if we clean generated output before generating new files, is enabled by default.

	use-cacheable-supports-method: A boolean which indicate if we use CacheableSupportsMethodInterface interface to improve caching performances when used with Symfony Serializer.

Multi schemas

Jane JsonSchema can also generate multiple schemas at the same time with different namespaces and directories,
allowing to handle JSON References on others schemas.

See Multi schemas generation for more information

Using a generated Model

This library generates basics P.O.P.O. objects (Plain Old PHP Objects) with a bunch of setters / getters. It also generates
all normalizers to handle denormalization from a json string, and normalization.

All normalizers respect the Symfony\Component\Serializer\Normalizer\NormalizerInterface and
Symfony\Component\Serializer\Normalizer\DenormalizerInterface from the Symfony Serializer Component [https://symfony.com/doc/current/components/serializer.html].

It also generate a JaneObjectNormalizer class that will act as an usual Symfony Normalizer.

Given this configuration:

<?php

return [
 'json-schema-file' => __DIR__ . '/json-schema.json',
 'root-class' => 'MyModel',
 'namespace' => 'Vendor\Library\Generated',
 'directory' => __DIR__ . '/generated',
];

You will have to do this:

<?php

$normalizers = [
 new Symfony\Component\Serializer\Normalizer\ArrayDenormalizer(),
 new Vendor\Library\Generated\Normalizer\JaneObjectNormalizer(),
];
$encoders = [new Symfony\Component\Serializer\Encoder\JsonEncoder(
 new Symfony\Component\Serializer\Encoder\JsonEncode([Symfony\Component\Serializer\Encoder\JsonEncode::OPTIONS => \JSON_UNESCAPED_SLASHES]),
 new Symfony\Component\Serializer\Encoder\JsonDecode([Symfony\Component\Serializer\Encoder\JsonDecode::ASSOCIATIVE => false])),
];

$serializer = new Symfony\Component\Serializer\Serializer($normalizers, $encoders);
$serializer->deserialize('{...}');

This serializer will be able to encode and decode every data respecting your json schema specification.

Note

Take note that we don’t use classic defaults for JsonEncode and JsonDecode. Using JSON_UNESCAPED_SLASHES
only makes sense if you can have JSON References in your data (not specification). However, using false for
JsonDecode (which means not using associative array but \stdClass instead) is mandatory.

As an example of why it’s mandatory, a JSON Schema could contain the following valid specification:

{
 "type": "object",
 "properties": {
 "foo": {
 "type": ["array", "object"]
 }
 }
}

When using associative array, it would be tricky (but feasible) to deal with data inside the array or object (need to detect if all keys are
numerical). The main problem comes when dealing with an empty array or object. In this case, there is no possibility
to know if it was an array or object, and in some cases, decoding and recoding this value (with no modification)
will change the data.

Multi schemas generation

Jane JsonSchema allows to generate multiple schemas at the same time with different namespaces and directories to handle
JSON References on others schemas.

Configuration

In order to use this feature, configuration of the .jane file will require a mapping of JSON Schema specification file
linked to a root class, namespace and directory.

As an example you may have this:

<?php

return [
 'mapping' => [
 __DIR__ . '/schema1.json' => [
 'root-class' => 'Foo',
 'namespace' => 'Vendor\Library\FooSchema',
 'directory' => __DIR__ . '/generated/Schema1',
],
 __DIR__ . '/schema2.json' => [
 'root-class' => 'Bar',
 'namespace' => 'Vendor\Library\BarSchema',
 'directory' => __DIR__ . '/generated/Schema2',
],
],
];

Using this configuration, Jane JsonSchema will generate all class of the schema1.json and schema2.json specification.
Also, all references between both schemas will use the specific namespace.

As an example, given that you have the Foo object in schema1.json:

{
 "type": "object",
 "properties": {
 "foo": { "type": "string" }
 }
}

And the Bar one in schema2.json:

{
 "type": "object",
 "properties": {
 "bar": { "$ref": "schema1.json#" }
 }
}

The property bar of the Bar object will reference the Vendor\Library\Schema1\Foo class.

Note

If we don’t specify the schema1.json in this configuration, Jane JsonSchema will still fetch the specification
and generate the Foo class. However, it will be under the same namespace (Vendor\Library\BarSchema),
and will have BarBar as the class name, instead of the Foo one.

Usage

In this case, Jane JsonSchema will generate two distinct NormalizerFactory, to be able to use references between
schemas, you will only need to merge normalizers:

<?php

$normalizers = array_merge(
 \Vendor\Library\FooSchema\Normalizer\NormalizerFactory::create(),
 \Vendor\Library\BarSchema\Normalizer\NormalizerFactory::create()
);

OpenAPI

Jane OpenAPI is a library to generate, in PHP, an http client and its associated models and serializers from a OpenAPI [https://www.openapis.org/]
specification: version 3.

Compatibility

Jane supports OpenAPI v2 & v3. Depending on your OpenAPI version, you should use following Jane version:

	OpenAPI
	Jane

	v3
	^5.0

	v2
	^4.0

Installation

Add this library with composer as a dev dependency (replace version depending on what you need):

composer require --dev jane-php/open-api "^5.0"

This library contains a lot of dependencies, to be able to generate code, which are not needed on runtime. However, the generated
code depends on other libraries and a few classes that are available through the runtime package. It is highly recommended
to add the runtime dependency as a requirement through composer:

composer require jane-php/open-api-runtime "^5.0"

By default, generated code is not formatted, to make it compliant to PSR2 standard and others format norms, you can add the
PHP CS Fixer [http://cs.sensiolabs.org/] library to your dev dependencies (and it makes it easier to debug!):

composer require --dev friendsofphp/php-cs-fixer

Generating a Client

This library provided a PHP console application to generate the Model, you can use it by executing the following command
at the root of your project:

php vendor/bin/jane-openapi generate

This command will try to read a config file named .jane-openapi located on the current working directory. However, you can name it as you
like and use the --config-file option to specify its location and name:

php vendor/bin/jane-openapi generate --config-file=jane-openapi-configuration.php

Note

No others options can be passed to the command. Having a config file ensure that a team working on the project always
use the same set of parameters and, when it changes, give vision of the new option used to generate the code.

Configuration file

The configuration file consists of a simple PHP script returning an array:

<?php

return [
 'openapi-file' => __DIR__ . '/openapi.json',
 'namespace' => 'Vendor\Library\Api',
 'directory' => __DIR__ . '/generated',
 'client' => 'psr18',
];

This example shows the minimum configuration required to generate a client:

	openapi-file: Specify the location of your OpenApi file, it can be a local file or a remote one https://my.domain.com/my-api.json.
It can also be a yaml file.

	namespace: Root namespace of all of your generated code

	directory: Directory where the code will be generated

	client: Client to generate (httplug or psr18, httplug is deprecated and will be removed in Jane v6.0.0)

Given this configuration, you will need to add the following configuration to composer, in order to load the generated files:

"autoload": {
 "psr-4": {
 "Vendor\\Library\\Api\\": "generated/"
 }
}

Options

Other options are available to customize the generated code:

	reference: A boolean which indicate to add the support for JSON Reference [https://tools.ietf.org/id/draft-pbryan-zyp-json-ref-03.html] into the generated code.

	date-format: A date format to specify how the generated code should encode and decode \DateTime object to string

	strict: A boolean which indicate strict mode (true by default), not strict mode generate more permissive client
not respecting some standards (nullable field as an example) client.

	use-fixer: A boolean which indicate if we make a first cs-fix after code generation, is disabled by default.

	fixer-config-file: A string to specify where to find the custom configuration for the cs-fixer after code generation, will remove all Jane default cs-fixer default configuration.

	clean-generated: A boolean which indicate if we clean generated output before generating new files, is enabled by default.

	use-cacheable-supports-method: A boolean which indicate if we use CacheableSupportsMethodInterface interface to improve caching performances when used with Symfony Serializer.

Using a generated client

Generating a client will produce same classes as the Json Schema library:

	Model files in the Model namespace

	Normalizer files in the Normalizer namespace

	A JaneObjectNormalizer class in the Normalizer namespace

Furthermore, it generates:

	Endpoints files in the Endpoint namespace, each API Endpoint will generate a class containing all the logic to go from Object to Request, and from Response to Object

	Client file in the root namespace containing all API endpoints

Creating the API Client

Generated Client class have a static method create which act like a factory to create your Client:

<?php

$apiClient = Vendor\Library\Generated\Client::create();

Optionally, you can pass a custom HttpClient respecting the PSR18 [https://www.php-fig.org/psr/psr-18/] Client standard. If you which to use the constructor
to reuse existing instances, sections below describe the 4 services used by it and how to create them.

Creating the Http Client

The main dependency on the Client class is an Http Client respecting the PSR18 [https://www.php-fig.org/psr/psr-18/] Client standard. We highly recommend
you to read the PSR18 [https://www.php-fig.org/psr/psr-18/] specification. This HTTP Client MAY redirect on a 3XX responses (depend on your API), but it MUST
not throw errors on 4XX and 5XX responses, as this can be handle by the generated code directly.

Recommended way of creating an HTTP Client is by using the discovery [http://docs.php-http.org/en/latest/discovery.html] library to create the client:

<?php

$httpClient = Http\Discovery\Psr18ClientDiscovery::find();

This allows user of the API to use any client respecting the standard.

Hint

You can use clients such as Symfony HttpClient [https://symfony.com/doc/current/components/http_client.html#psr-18] as PSR18 [https://www.php-fig.org/psr/psr-18/] client.

Creating the Serializer

Like in Using a generated Model, creating a serializer is done by using the JaneObjectNormalizer class:

<?php

$normalizers = [
 new Symfony\Component\Serializer\Normalizer\ArrayDenormalizer(),
 new Vendor\Library\Generated\Normalizer\JaneObjectNormalizer(),
];
$encoders = [new Symfony\Component\Serializer\Encoder\JsonEncoder(
 new Symfony\Component\Serializer\Encoder\JsonEncode(JSON_UNESCAPED_SLASHES),
 new Symfony\Component\Serializer\Encoder\JsonDecode(false))
];

$serializer = new Symfony\Component\Serializer\Serializer($normalizers, $encoders);

Creating the Request Factory

The generated endpoints will also need a factory to transform parameters and object of the endpoint to a PSR7 Request [http://www.php-fig.org/psr/psr-7/#32-psrhttpmessagerequestinterface].

Like the HTTP Client, it is recommended to use the discovery [http://docs.php-http.org/en/latest/discovery.html] library to create it:

<?php

$requestFactory = Http\Discovery\Psr17FactoryDiscovery::findRequestFactory();

Creating the Stream Factory

The generated endpoints will also need a service to transform body parameters like resource or string into
PSR7 Stream [https://www.php-fig.org/psr/psr-7/#34-psrhttpmessagestreaminterface] when uploading file (multipart form).

Like the HTTP Client and Request Factory, it is recommended to use the discovery [http://docs.php-http.org/en/latest/discovery.html] library to create it:

<?php

$streamFactory = Http\Discovery\Psr17FactoryDiscovery::findStreamFactory();

Using the API Client

Generated code has complete PHPDoc [https://www.phpdoc.org/] comment on each method, which should correctly describe the endpoint.
Method names for each endpoint depends on the operationId property of the OpenAPI specification. And if not present
it will be generated from the endpoint path:

<?php

$apiClient = Vendor\Library\Generated\Client::create();
// Operation id being listFoo
$foos = $apiClient->listFoo();

Also depending on the parameters of the endpoint, it may have 2 to more arguments.

Last parameter of each endpoint, allows to specify which type of data the method must return. By default, it will try to
return an object depending on the status code of your response. But you can force the method to return a PSR7 Response [http://www.php-fig.org/psr/psr-7/#33-psrhttpmessageresponseinterface]
object:

$apiClient = Vendor\Library\Generated\Client::create();
// First argument is an empty list of parameters, second one being the return type
$response = $apiClient->listFoo([], Vendor\Library\Generated\Client::FETCH_RESPONSE);

This allow to do custom work when the API does not return standard JSON body.

Host and basePath support

Jane OpenAPI will never generate the complete url with the host and the base path for an endpoint. Instead, it will only
do a request on the specified path.

If host and/or base path is present in the specification it is added, via the PluginClient, AddHostPlugin and
AddPathPlugin thanks to php-http plugin system [http://docs.php-http.org/en/latest/plugins/introduction.html] when using the static create.

This allow you to configure different host and base path given a specific environment / server, which may defer when in test,
preprod and production environment.

Jane OpenAPI will always try to use https if present in the scheme (or if there is no scheme). It will use the first scheme
present if https is not present.

Example

In this section, we will see a working example of OpenApi v3 client onto a simple API that gives facts about cats and comment it.

Warning

We suggest you to read Generating a Client and Using a generated client first to understand this page more easily.

You can find the fully working example on the following link: https://github.com/janephp/openapi3-example

OpenAPI schema

First, we need a valid OpenAPI schema. You can use tool such as Stoplight [https://stoplight.io/studio/] or other OpenApi designer.

I choosed to represent CatFacts API [https://alexwohlbruck.github.io/cat-facts/] within this example:

openapi: 3.0.0
info:
 version: 1.0.0
 title: 'CatFacts API'
servers:
 - url: https://cat-fact.herokuapp.com
paths:
 /facts/random:
 get:
 operationId: randomFact
 responses:
 200:
 description: 'Get a random `Fact`'
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/Fact'
components:
 schemas:
 Fact:
 type: object
 properties:
 _id:
 type: string
 description: 'Unique ID for the `Fact`'
 __v:
 type: integer
 description: 'Version number of the `Fact`'
 user:
 type: string
 description: 'ID of the `User` who added the `Fact`'
 text:
 type: string
 description: 'The `Fact` itself'
 updatedAt:
 type: string
 format: date-time
 description: 'Date in which `Fact` was last modified'
 sendDate:
 type: string
 description: 'If the `Fact` is meant for one time use, this is the date that it is used'
 deleted:
 type: boolean
 description: 'Weather or not the `Fact` has been deleted (Soft deletes are used)'
 source:
 type: string
 description: 'Can be `user` or `api`, indicates who added the fact to the DB'
 used:
 type: boolean
 description: 'Weather or not the `Fact` has been sent by the CatBot. This value is reset each time every `Fact` is used'
 type:
 type: string
 description: 'Type of animal the `Fact` describes (e.g. ‘cat’, ‘dog’, ‘horse’)'

This schema describe the endpoint and the model of the CatFact API.

Jane configuration

We need to configure Jane before generation. So we create a .jane-openapi file:

<?php

return [
 'openapi-file' => __DIR__ . '/schema.yaml',
 'namespace' => 'CatFacts\Api',
 'directory' => __DIR__ . '/generated/',
 'date-format' => \DateTimeInterface::RFC3339_EXTENDED, // date-time format use by CatFact API
 'client' => 'psr18',
];

It will contains a reference to your main schema file (that file can be linked to other files if you want), the PHP
namespace you want for generated classes and the directory you want to use.

Warning

Client argument is recommended, if you don’t fill it, it will generated a HTTPlug Client which is not what we are
showing here and HTTPlug Client generation is deprecated since Jane v5.1.0

Jane generation

Now we can run generation, basically just require jane with composer (see OpenAPI for more details
about installation) and run the following command:

vendor/bin/jane-openapi generate

It will find any .jane-openapi file and use it as configuration. If your file has a different name, just add
-c path/to/my/file after the command.

Creating a client

Then you need a Client to bridge between Jane and your application. Jane use PSR18 [https://www.php-fig.org/psr/psr-18/] to make this bridge easier
which allow us to have any middleware we need. If you provide server URL in your schema and you have no authentification
needed for your API, then everything will be automated by Jane, you just have to do:

use CatFacts\Api\Client;

$client = Client::create();

And that’s all you need. If you need authentification, please read Using a generated client.

Using your client

Finally we can use our Client and try to get some cool cat fact:

<?php

require_once __DIR__.'/vendor/autoload.php';

$client = \CatFacts\ClientFactory::create();
$fact = $client->randomFact();

And this will give us a Fact object as following:

object(CatFacts\Api\Model\Fact)#29 (10) {
 ["id":protected]=>
 string(24) "591f98108dec2e14e3c20b0f"
 ["v":protected]=>
 int(0)
 ["user":protected]=>
 NULL
 ["text":protected]=>
 string(63) "Cats have been domesticated for half as long as dogs have been."
 ["updatedAt":protected]=>
 object(DateTime)#28 (3) {
 ["date"]=>
 string(26) "2019-08-24 20:20:02.145000"
 ["timezone_type"]=>
 int(2)
 ["timezone"]=>
 string(1) "Z"
 }
 ["sendDate":protected]=>
 NULL
 ["deleted":protected]=>
 bool(false)
 ["source":protected]=>
 string(3) "api"
 ["used":protected]=>
 bool(false)
 ["type":protected]=>
 string(3) "cat"
}

Extending the Client

Some endpoints need sometimes custom implementation that were not possible to generate through the OpenAPI Specification.
Jane OpenAPI try to be nice with this and each specific behavior of an API call has been seprated into different methods
which are public or protected.

As an exemple you may want to encode in base64 a specific query parameter of an Endpoint. First step is to create your
own Endpoint extending the generated one:

<?php

namespace MyApi\Endpoint;

use MyApiGenerated\Endpoint\FooEndpoint as BaseEndpoint;
use Symfony\Component\OptionsResolver\Options;
use Symfony\Component\OptionsResolver\OptionsResolver;

class FooEndpoint extends BaseEndpoint
{
 protected function getQueryOptionsResolver(): OptionsResolver
 {
 $optionsResolver = parent::getQueryOptionsResolver();
 $optionsResolver->setNormalizer('bar', function (Options $options, $value) {
 return base64_encode($value);
 });

 return $optionsResolver;
 }
}

Once this endpoint is generated, you need to tell your Client to use yours endpoint instead of the Generated one. For that
you can extends the generated client and override the method that use this endpoint:

<?php

namespace MyApi;

use MyApiGenerated\Client as BaseClient;
use MyApi\Endpoint\FooEndpoint;

class Client extends BaseClient
{
 public function getFoo(array $queryParameters = [], $fetch = self::FETCH_OBJECT)
 {
 return $this->executePsr7Endpoint(new FooEndpoint($queryParameters), $fetch);
 }
}

Then you will need to use your own client instead of the generated one. To extends other parts of the endpoint you can look
at the generated code.

AutoMapper

Jane AutoMapper is an experimental library that generate AutoMapper class which allows to automap values from Class to Class.

Taken from AutoMapper/AutoMapper [https://github.com/AutoMapper/AutoMapper]:

AutoMapper is a simple little library built to solve a deceptively complex problem - getting rid of code that mapped one object to another. This type of code is rather dreary and boring to write, so why not invent a tool to do it for us?

In PHP libraries and application mapping from one object to another is fairly common:

	ObjectNormalizer / GetSetMethodNormalizer in symfony/serializer

	Mapping request data to object in symfony/form

	Hydrate object from SQL results in Doctrine

	Migrating legacy data to new model

	Mapping from database model to DTO objects (API / CQRS / …)

	And even more…

The goal of this component is to offer an abstraction on top of this subject.
For that goal it provides an unique interface (other code is only implementation detail):

interface AutoMapperInterface
{
 /**
 * Map data from to target.
 *
 * @param array|object $source Any data object, which may be an object or an array
 * @param string|array|object $target To which type of data, or data, the source should be mapped
 * @param Context $context Options mappers have access to
 *
 * @return array|object The mapped object
 */
 public function map($source, $target, Context $context = null);
}

The source is from where the data comes from, it can be either an array or an object.
The target is where the data should be mapped to, it can be either a string (representing a type: array or class name) or directly an array or object (in that case construction of the object is avoided).

Current implementation handle all of those possiblities at the exception of the mapping from a dynamic object (array / stdClass) to another dynamic object.

Using AutoMapper

Basic usage

Someone who wants to map an object will only have to do this:

// With class name
$target = $automapper->map($source, Foo::class);
// With existing object
$target = new Foo();
$target = $automapper->map($source, $target);
// To an array
$target = $automapper->map($source, 'array');
// From an array
$source = ['a' => 'b'];
$target = $automapper->map($source, Foo::class);

With custom context

Context object allow to pass options for the mapping:

// Using context
$context = new Context();
$target = $automapper->map($source, Foo::class, $context);

// Groups (serializer annotation), will only map value that match those group in source and target
$context = new Context(['groupA', 'groupB']);
// Allowed attributes, will only map specific properties (exclude others), allow nesting for sub mapping like the serializer component
$context = new Context(null, ['propertyA', 'propertyB', 'foo' => ['fooPropertyA']]);
// Ignored attributes, exclude thos propreties include others
$context = new Context(null, null, ['propertyA', 'propertyB', 'foo' => ['fooPropertyA']]);
// Set circular reference limit
$context->setCircularReferenceLimit(2);
// Set circular reference handler
$context->setCircularReferenceHandler(function () { ... });

Features

Private properties

This component map private properties (However this can deactivated).

Nested Mapping

This component map nested class when it’s possible.

Circular Reference

Default circular reference implementation is to keep them during mapping, which means somethings like:

$foo = new Foo();
$foo->setFoo($foo);

$target = $this->automapper->map($foo, 'array');

Will produce an array where the foo property will be a reference to the parent.

Having that allow using this component as a DeepCloning service by mapping to the same object:

$foo = new Foo();
$foo->setFoo($foo);

$deepClonedFoo = $this->automapper->map($foo, Foo::class);

Max Depth

This component understand the Max Depth Annotation of the Serializer component and will not map after it’s reached.

Name Converter

Default implementation allows you to pass a Name Converter when converting to or from an array to change the property name used.

Discriminator Mapping

This component understand the Discriminator Mapping Annotation of the Serializer component and should correctly handle construction of object when having inheritance.

Type casting

This component will try to correctly map scalar values (going from int to string, etc.).

Index

 _static/up-pressed.png

_static/up.png

_static/ajax-loader.gif

_static/comment-bright.png

_static/comment-close.png

_static/comment.png

nav.xhtml

 Table of Contents

 		
 Jane: Tools for generating PHP Code

_static/down.png

_static/down-pressed.png

_static/minus.png

_static/plus.png

_static/file.png

