
Jane Documentation Documentation
Release 4.0.0

Joel Wurtz

Sep 20, 2019

Contents

1 Backwards compatibility 3
1.1 JsonSchema and OpenAPI . 3
1.2 Generated Code . 3
1.3 Runtime Libraries . 3

2 Internal 5
2.1 Guessing . 5
2.2 Analyzing . 5
2.3 Generation . 5

3 Json Schema 7
3.1 Installation . 7

4 Generating a Model 9
4.1 Configuration file . 9
4.2 Options . 10
4.3 Multi schemas . 10

5 Using a generated Model 11

6 Multi schemas generation 13
6.1 Configuration . 13
6.2 Usage . 14

7 OpenAPI 15
7.1 Compatibility . 15
7.2 Installation . 15

8 Generating a Client 17
8.1 Configuration file . 17
8.2 Options . 18

9 Using a generated client 19
9.1 Creating the API Client . 19
9.2 Creating the Http Client . 19
9.3 Creating the Serializer . 20
9.4 Creating the Message Factory . 20
9.5 Creating the Stream Factory . 20

i

9.6 Using the API Client . 20
9.7 Host and basePath support . 21

10 Extending the Client 23

11 AutoMapper 25

ii

Jane Documentation Documentation, Release 4.0.0

Jane is a set of libraries to generate Models & API Clients based on JsonSchema / OpenAPI specs by following high
quality PHP code guidelines and respecting common & advanced PSR.

• Json Schema

• OpenAPI

• AutoMapper

Contents 1

Jane Documentation Documentation, Release 4.0.0

2 Contents

CHAPTER 1

Backwards compatibility

Backwards compatiblity is an important topic. Those libraries follow Semver, so backwards compatibility will only
break between major versions. This library may use deprecations notices to inform you of the change, but it’s a low
probability, you should always check the CHANGELOG when switching to a new major version.

1.1 JsonSchema and OpenAPI

Those libraries generate code and should not be used in runtime. Also, there is no need to extends or use this code in
another libraries. The only thing used, is the command line.

So there is no BC promise on those libraries, you can consider that everything is internal. The only BC promise is
about the command line, and the generated code.

1.2 Generated Code

Code generated fall under our BC Promise, but only the public and protected API of the generated code. When a
method of a class is generated, its signature will not change with minor release, but it’s implementation may change,
however a private method can have its signature updated. Behavior of the implementation should not change between
minor releases unless behavior is buggy.

No class will be removed between minor versions, but there can be new classes added.

1.3 Runtime Libraries

JsonSchema Runtime and OpenAPI Runtime libraries have a standard BC Promise.

3

Jane Documentation Documentation, Release 4.0.0

4 Chapter 1. Backwards compatibility

CHAPTER 2

Internal

This documentation describes how JsonSchema & OpenAPI Jane libraries work to generate the code. It is mainly
oriented for people wanting to contribute to theses libraries.

Theses libraries is based on 3 different steps:

2.1 Guessing

First step is to guess a set of metadata given a specification (JsonSchema or OpenAPI at the time of writing this).
To do so, it will read the specification, transform it into objects and pass it to guessers implementing one of the
GuesserInterface.

Each guesser tell if it supports the current specification and returns metadata. Occasionally, it will try to guess sub
objects of the specification.

2.2 Analyzing

Once all metadata are guessed, they are passed to a set of generators implementing the GeneratorInterface
given a Context.

Then, each generator will analyze the metadata and create PHP code by using the PHP Parser Library. Using the
library improves the flexibility to create complex code, as using a template generator solution.

Context provides a lots of functions to generate code, like using unique variable name in a scope or adding generated
file.

2.3 Generation

When the code is ready, the Context is read to generate PHP files and optionally format it with PHP CS Fixer if
available.

5

https://github.com/nikic/PHP-Parser
http://cs.sensiolabs.org/

Jane Documentation Documentation, Release 4.0.0

6 Chapter 2. Internal

CHAPTER 3

Json Schema

Jane JsonSchema is a library to generate models and serializers in PHP from a JSON Schema draft v4.

3.1 Installation

Add this library with composer as a dev dependency:

composer require --dev jane-php/json-schema "^5.0"

This library contains a lot of dependencies to be able to generate code which are not needed on runtime. However, the
generated code depends on other libraries and a few classes that are available through the runtime package. It is highly
recommended to add the runtime dependency as a requirement through composer:

composer require jane-php/json-schema-runtime "^5.0"

By default, generated code is not formatted, to make it compliant to PSR2 standard and others format norms, you can
add the PHP CS Fixer library to your dev dependencies (and it makes it easier to debug!):

composer require --dev friendsofphp/php-cs-fixer

7

http://json-schema.org/
http://cs.sensiolabs.org/

Jane Documentation Documentation, Release 4.0.0

8 Chapter 3. Json Schema

CHAPTER 4

Generating a Model

This library provided a PHP console application to generate the Model, you can use it by executing the following
command at the root of your project:

php vendor/bin/jane generate

This command will try to read a config file named .jane located on the current working directory. However, you can
name it as you like and use the --config-file option to specify its location and name:

php vendor/bin/jane generate --config-file=jane-configuration.php

Note: No others options can be passed to this command. Having a config file ensure that a team working on the
project always use the same set of parameters and, when it changes, give vision of the new option used to generate the
code.

4.1 Configuration file

The configuration file consists of a simple PHP script returning an array:

<?php

return [
'json-schema-file' => __DIR__ . '/json-schema.json',
'root-class' => 'MyModel',
'namespace' => 'Vendor\Library\Generated',
'directory' => __DIR__ . '/generated',

];

This example shows the minimum configuration required to generate a Model:

• json-schema-file: Specify the location of your json schema file, it can be a local file or a remote one
https://my.domain.com/my-schema.json

9

Jane Documentation Documentation, Release 4.0.0

• root-class: The root class of the root object defined in your json schema, if there is no property on the root
object it will not be used

• namespace: Root namespace of all of your generated code

• directory: Directory where the code will be generated at

Given this configuration you will need to add the following configuration to composer, in order to load the generated
files:

"autoload": {
"psr-4": {

"Vendor\\Library\\Generated\\": "generated/"
}

}

4.2 Options

Other options are available to customize the generated code:

• reference: A boolean which indicate to add the support for JSON Reference into the generated code.

• date-format: A date format to specify how the generated code should encode and decode \DateTime
object to string

• use-fixer: A boolean which indicate if we make a first cs-fix after code generation

• fixer-config-file: A string to specify where to find the custom configuration for the cs-fixer after code
generation

• use-cacheable-supports-method: A boolean which indicate if we use
CacheableSupportsMethodInterface interface to improve caching performances when used
with Symfony Serializer.

4.3 Multi schemas

Jane JsonSchema can also generate multiple schemas at the same time with different namespaces and directories,
allowing to handle JSON References on others schemas.

See Multi schemas generation for more information

10 Chapter 4. Generating a Model

https://tools.ietf.org/id/draft-pbryan-zyp-json-ref-03.html

CHAPTER 5

Using a generated Model

This library generates basics P.O.P.O. objects (Plain Old PHP Objects) with a bunch of setters / getters. It also generates
all normalizers to handle denormalization from a json string, and normalization.

All normalizers respect the Symfony\Component\Serializer\Normalizer\NormalizerInterface
and Symfony\Component\Serializer\Normalizer\DenormalizerInterface from the Symfony
Serializer Component.

It also generates a NormalizerFactory class having a static function create returning an array of all normaliz-
ers.

Given this configuration:

<?php

return [
'json-schema-file' => __DIR__ . '/json-schema.json',
'root-class' => 'MyModel',
'namespace' => 'Vendor\Library\Generated',
'directory' => __DIR__ . '/generated',

];

You will have to do this:

<?php

$normalizers = Vendor\Library\Generated\Normalizer\NormalizerFactory::create();
$encoders = [new Symfony\Component\Serializer\Encoder\JsonEncoder(

new
→˓Symfony\Component\Serializer\Encoder\JsonEncode([Symfony\Component\Serializer\Encoder\JsonEncode::OPTIONS
→˓=> \JSON_UNESCAPED_SLASHES]),

new
→˓Symfony\Component\Serializer\Encoder\JsonDecode([Symfony\Component\Serializer\Encoder\JsonDecode::ASSOCIATIVE
→˓=> false])),
];

(continues on next page)

11

https://symfony.com/doc/current/components/serializer.html
https://symfony.com/doc/current/components/serializer.html

Jane Documentation Documentation, Release 4.0.0

(continued from previous page)

$serializer = new Symfony\Component\Serializer\Serializer($normalizers, $encoders);
$serializer->deserialize('{...}');

This serializer will be able to encode and decode every data respecting your json schema specification.

Note: Take note that we don’t use classic defaults for JsonEncode and JsonDecode. Using
JSON_UNESCAPED_SLASHES only makes sense if you can have JSON References in your data (not specifica-
tion). However, using false for JsonDecode (which means not using associative array but \stdClass instead)
is mandatory.

As an example of why it’s mandatory, a JSON Schema could contain the following valid specification:

{
"type": "object",
"properties": {

"foo": {
"type": ["array", "object"]

}
}

}

When using associative array, it would be tricky (but feasible) to deal with data inside the array or object (need to
detect if all keys are numerical). The main problem comes when dealing with an empty array or object. In this case,
there is no possibility to know if it was an array or object, and in some cases, decoding and recoding this value (with
no modification) will change the data.

12 Chapter 5. Using a generated Model

CHAPTER 6

Multi schemas generation

Jane JsonSchema allows to generate multiple schemas at the same time with different namespaces and directories to
handle JSON References on others schemas.

6.1 Configuration

In order to use this feature, configuration of the .jane file will require a mapping of JSON Schema specification file
linked to a root class, namespace and directory.

As an example you may have this:

<?php

return [
'mapping' => [

__DIR__ . '/schema1.json' => [
'root-class' => 'Foo',
'namespace' => 'Vendor\Library\FooSchema',
'directory' => __DIR__ . '/generated/Schema1',

],
__DIR__ . '/schema2.json' => [

'root-class' => 'Bar',
'namespace' => 'Vendor\Library\BarSchema',
'directory' => __DIR__ . '/generated/Schema2',

],
],

];

Using this configuration, Jane JsonSchema will generate all class of the schema1.json and schema2.json
specification. Also, all references between both schemas will use the specific namespace.

As an example, given that you have the Foo object in schema1.json:

13

Jane Documentation Documentation, Release 4.0.0

{
"type": "object",
"properties": {

"foo": { "type": "string" }
}

}

And the Bar one in schema2.json:

{
"type": "object",
"properties": {

"bar": { "$ref": "schema1.json#" }
}

}

The property bar of the Bar object will reference the Vendor\Library\Schema1\Foo class.

Note: If we don’t specify the schema1.json in this configuration, Jane JsonSchema will still fetch the specification
and generate the Foo class. However, it will be under the same namespace (Vendor\Library\BarSchema), and
will have BarBar as the class name, instead of the Foo one.

6.2 Usage

In this case, Jane JsonSchema will generate two distinct NormalizerFactory, to be able to use references between
schemas, you will only need to merge normalizers:

<?php

$normalizers = array_merge(
\Vendor\Library\FooSchema\Normalizer\NormalizerFactory::create(),
\Vendor\Library\BarSchema\Normalizer\NormalizerFactory::create()

);

14 Chapter 6. Multi schemas generation

CHAPTER 7

OpenAPI

Jane OpenAPI is a library to generate, in PHP, an http client and its associated models and serializers from a OpenAPI
specification: version 3.

7.1 Compatibility

Since OpenAPI is supported in both v2 & v3 version, here is Jane version you need depending on your OpenAPI
version:

OpenAPI Jane
v3 ^5.0
v2 ^4.0

7.2 Installation

Add this library with composer as a dev dependency (replace version depending on what you need):

composer require --dev jane-php/open-api "^5.0"

This library contains a lot of dependencies, to be able to generate code, which are not needed on runtime. However,
the generated code depends on other libraries and a few classes that are available through the runtime package. It is
highly recommended to add the runtime dependency as a requirement through composer:

composer require jane-php/open-api-runtime "^5.0"

By default, generated code is not formatted, to make it compliant to PSR2 standard and others format norms, you can
add the PHP CS Fixer library to your dev dependencies (and it makes it easier to debug!):

composer require --dev friendsofphp/php-cs-fixer

15

https://www.openapis.org/
http://cs.sensiolabs.org/

Jane Documentation Documentation, Release 4.0.0

16 Chapter 7. OpenAPI

CHAPTER 8

Generating a Client

This library provided a PHP console application to generate the Model, you can use it by executing the following
command at the root of your project:

php vendor/bin/jane-openapi generate

This command will try to read a config file named .jane-openapi located on the current working directory.
However, you can name it as you like and use the --config-file option to specify its location and name:

php vendor/bin/jane-openapi generate --config-file=jane-openapi-configuration.php

Note: No others options can be passed to the command. Having a config file ensure that a team working on the
project always use the same set of parameters and, when it changes, give vision of the new option used to generate the
code.

8.1 Configuration file

The configuration file consists of a simple PHP script returning an array:

<?php

return [
'openapi-file' => __DIR__ . '/openapi.json',
'namespace' => 'Vendor\Library\Api',
'directory' => __DIR__ . '/generated',

];

This example shows the minimum configuration required to generate a client:

• openapi-file: Specify the location of your OpenApi file, it can be a local file or a remote one https://
my.domain.com/my-api.json. It can also be a yaml file.

17

Jane Documentation Documentation, Release 4.0.0

• namespace: Root namespace of all of your generated code

• directory: Directory where the code will be generated

Given this configuration, you will need to add the following configuration to composer, in order to load the generated
files:

"autoload": {
"psr-4": {

"Vendor\\Library\\Api\\": "generated/"
}

}

8.2 Options

Other options are available to customize the generated code:

• reference: A boolean which indicate to add the support for JSON Reference into the generated code.

• date-format: A date format to specify how the generated code should encode and decode \DateTime
object to string

• strict: A boolean which indicate strict mode (true by default), not strict mode generate more permissive
client not respecting some standards (nullable field as an example) client.

• use-fixer: A boolean which indicate if we make a first cs-fix after code generation

• fixer-config-file: A string to specify where to find the custom configuration for the cs-fixer after code
generation

• use-cacheable-supports-method: A boolean which indicate if we use
CacheableSupportsMethodInterface interface to improve caching performances when used
with Symfony Serializer.

18 Chapter 8. Generating a Client

https://tools.ietf.org/id/draft-pbryan-zyp-json-ref-03.html

CHAPTER 9

Using a generated client

Generating a client will produce same classes as the Json Schema library:

• Model files in the Model namespace

• Normalizer files in the Normalizer namespace

• A NormalizerFactory class in the Normalizer namespace

Furthermore, it generates:

• Endpoints files in the Endpoint namespace, each API Endpoint will generate a class containing all the logic
to go from Object to Request, and from Response to Object

• Client file in the root namespace containing all API endpoints

9.1 Creating the API Client

Generated Client class have a static method create which act like a factory to create your Client:

<?php

$apiClient = Vendor\Library\Generated\Client::create();

Optionally, you can pass a custom HttpClient respecting the HTTPlug standard. If you which to use the constructor
to reuse existing instances, sections below describe the 4 services used by it and how to create them.

9.2 Creating the Http Client

The main dependency on the Client class is an Http Client respecting the HTTPlug standard. We highly recommend
you to read the docs on HTTPlug. This HTTP Client MAY redirect on a 3XX responses (depend on your API), but it
MUST not throw errors on 4XX and 5XX responses, as this can be handle by the generated code directly.

Recommended way of creating an HTTP Client is by using the discovery library of HTTPlug to create the client:

19

http://docs.php-http.org/en/latest/index.html
http://docs.php-http.org/en/latest/index.html
http://docs.php-http.org/en/latest/index.html
http://docs.php-http.org/en/latest/discovery.html

Jane Documentation Documentation, Release 4.0.0

<?php

$httpClient = Http\Discovery\HttpClientDiscovery::find();

This allows user of the API to use any client respecting the standard.

9.3 Creating the Serializer

Like in Using a generated Model, creating a serializer is done by using the NormalizerFactory class:

<?php

$normalizers = Vendor\Library\Generated\Normalizer\NormalizerFactory::create();
$encoders = [new Symfony\Component\Serializer\Encoder\JsonEncoder(

new Symfony\Component\Serializer\Encoder\JsonEncode(JSON_UNESCAPED_SLASHES),
new Symfony\Component\Serializer\Encoder\JsonDecode(false))

];

$serializer = new Symfony\Component\Serializer\Serializer($normalizers, $encoders);

9.4 Creating the Message Factory

The generated endpoints will also need a service to transform parameters and object of the endpoint to a PSR7 Request
This is done by using the Message Factory Interface from HTTPlug.

Like the HTTP Client, it is recommended to use the discovery library of HTTPlug to create it:

<?php

$messageFactory = Http\Discovery\MessageFactoryDiscovery::find();

9.5 Creating the Stream Factory

The generated endpoints will also need a service to transform body parameters like resource or string into PSR7
Stream when uploading file (multipart form). This is done by using the Stream Factory Interface from HTTPlug.

Like the HTTP Client and Message Factory, it is recommended to use the discovery library of HTTPlug to create it:

<?php

$streamFactory = Http\Discovery\StreamFactoryDiscovery::find();

9.6 Using the API Client

Generated code has complete PHPDoc comment on each method, which should correctly describe the endpoint.
Method names for each endpoint depends on the operationId property of the OpenAPI specification. And if
not present it will be generated from the endpoint path:

20 Chapter 9. Using a generated client

http://www.php-fig.org/psr/psr-7/#32-psrhttpmessagerequestinterface
http://docs.php-http.org/en/latest/message/message-factory.html
http://docs.php-http.org/en/latest/index.html
http://docs.php-http.org/en/latest/discovery.html
http://docs.php-http.org/en/latest/index.html
http://docs.php-http.org/en/latest/discovery.html
https://www.phpdoc.org/

Jane Documentation Documentation, Release 4.0.0

<?php

$apiClient = Vendor\Library\Generated\Client::create();
// Operation id being listFoo
$foos = $apiClient->listFoo();

Also depending on the parameters of the endpoint, it may have 2 to more arguments.

Last parameter of each endpoint, allows to specify which type of data the method must return. By default, it will try
to return an object depending on the status code of your response. But you can force the method to return a PSR7
Response object:

$apiClient = Vendor\Library\Generated\Client::create();
// First argument is an empty list of parameters, second one being the return type
$response = $apiClient->listFoo([], Vendor\Library\Generated\Client::FETCH_RESPONSE);

This allow to do custom work when the API does not return standard JSON body.

9.7 Host and basePath support

Jane OpenAPI will never generate the complete url with the host and the base path for an endpoint. Instead, it will
only do a request on the specified path.

If host and/or base path is present in the specification it is added, via the PluginClient, AddHostPlugin and
AddPathPlugin thanks to HTTPlug plugin system when using the static create.

This allow you to configure different host and base path given a specific environment / server, which may defer when
in test, preprod and production environment.

Jane OpenAPI will always try to use https if present in the scheme (or if there is no scheme). It will use the first
scheme present if https is not present.

9.7. Host and basePath support 21

http://www.php-fig.org/psr/psr-7/#33-psrhttpmessageresponseinterface
http://www.php-fig.org/psr/psr-7/#33-psrhttpmessageresponseinterface
http://docs.php-http.org/en/latest/plugins/introduction.html

Jane Documentation Documentation, Release 4.0.0

22 Chapter 9. Using a generated client

CHAPTER 10

Extending the Client

Some endpoints need sometimes custom implementation that were not possible to generate through the OpenAPI
Specification. Jane OpenAPI try to be nice with this and each specific behavior of an API call has been seprated into
different methods which are public or protected.

As an exemple you may want to encode in base64 a specific query parameter of an Endpoint. First step is to create
your own Endpoint extending the generated one:

<?php

namespace MyApi\Endpoint;

use MyApiGenerated\Endpoint\FooEndpoint as BaseEndpoint;
use Symfony\Component\OptionsResolver\Options;
use Symfony\Component\OptionsResolver\OptionsResolver;

class FooEndpoint extends BaseEndpoint
{

protected function getQueryOptionsResolver(): OptionsResolver
{

$optionsResolver = parent::getQueryOptionsResolver();
$optionsResolver->setNormalizer('bar', function (Options $options, $value) {

return base64_encode($value);
});

return $optionsResolver;
}

}

Once this endpoint is generated, you need to tell your Client to use yours endpoint instead of the Generated one. For
that you can extends the generated client and override the method that use this endpoint:

<?php

namespace MyApi;

(continues on next page)

23

Jane Documentation Documentation, Release 4.0.0

(continued from previous page)

use MyApiGenerated\Client as BaseClient;
use MyApi\Endpoint\FooEndpoint;

class Client extends BaseClient
{

public function getFoo(array $queryParameters = [], $fetch = self::FETCH_OBJECT)
{

return $this->executePsr7Endpoint(new FooEndpoint($queryParameters), $fetch);
}

}

Then you will need to use your own client instead of the generated one. To extends other parts of the endpoint you can
look at the generated code.

24 Chapter 10. Extending the Client

CHAPTER 11

AutoMapper

Jane AutoMapper is an experimental that generate automapper class which allows to automap values from Class to
Class.

WIP

25

	Backwards compatibility
	JsonSchema and OpenAPI
	Generated Code
	Runtime Libraries

	Internal
	Guessing
	Analyzing
	Generation

	Json Schema
	Installation

	Generating a Model
	Configuration file
	Options
	Multi schemas

	Using a generated Model
	Multi schemas generation
	Configuration
	Usage

	OpenAPI
	Compatibility
	Installation

	Generating a Client
	Configuration file
	Options

	Using a generated client
	Creating the API Client
	Creating the Http Client
	Creating the Serializer
	Creating the Message Factory
	Creating the Stream Factory
	Using the API Client
	Host and basePath support

	Extending the Client
	AutoMapper

